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The force and velocity correlation functions for a particle interacting with a 
bath are calculated within a model allowing for finite memory effects. The 
relevance of a Brownian picture is delineated in view of the respective behavior 
of these functions and appears fully inadequate below some cross-over tem- 
perature; then, the interplay between quantum and thermal fluctuations yields 
some long time tails on the same time scale for both correlation functions. The 
real space transient diffusion coefficient is found to exceed its asymptotic 
Einstein value for most times in that regime. The limiting case of an infinitely 
short memory time is also investigated and is seen to produce weak divergences 
on a time scale which is small as compared to the other characteristic times. 

KEY WORDS: Quantum noise; correlation functions; long time tails; Brow- 
nian motion. 

1. I N T R O D U C T I O N  

The behavior  of a q u a n t u m  system coupled to a thermal  bath  has been for 

years a much studied problem. A celebrated paper  is due to Ford,  Kac, and  
Mazur,/1) in which these authors  show how to make a heat ba th  with a set 
of harmonic  oscillators coupled in a prescribed manner .  More  recently, 
contradic tory conclusions by Caldeira and  Leggett (2) and  by W i d o m  and  

Clark (3/ on the influence of dissipat ion on q u a n t u m  tunne l ing  have reac- 
t ivated the interest in this problem. 

Connect ions  with the q u a n t u m  Brownian  mot ion  are obvious and  a 

general discussion can be found in Ref. 4. In  the present paper, we analyze 
the time behavior  of various correlat ion funct ions and  we show that well- 
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separated time scales--which are required for the interpretation in terms of 
a standard Brownian motion only emerge in the high-temperature limit. 
In the opposite low-temperature limit, the interplay between quantum and 
thermal fluctuations becomes effective, leading to long time tails in the 
correlation functions varying like - t  -2 and, consequently, to a non- 
classical behavior of the diffusion coefficient as a function of time. Our 
analysis also illustrates, within a particular model, part of the statements or 
results appearing in the paper by Iche and Nozi6res. (5) 

2. M O D E L  A N D  BASIC N O T A T I O N S  

In the present paper we are essentially interested in specific aspects 
introduced by quantum effects. It is best to start from the simplest model in 
order to exemplify the expected differences between classical and quantum 
situations. This is the reason why we shall study the damped free particle. 

In obvious notations, the model Hamiltonian for a free particle (mass 
M) linearly coupled to a set of oscillators (m,, co n, bn, b~) can be written ~2) 

M f2n X- 2 
H=-~--~+ ~ + -~m,c%x,+ 2 mnco2 (1) 

where the last term has been added in order to cancel spurious unphysical 
divergences. (2c~ In the Hamiltonian (1), the interaction is taken as 
bilinear./2c~ Clearly, this implicitly contains a weak coupling assumption; 
this is reminiscent of the great M/mn ratio characteristic of classical Brow- 
nian motion, since then the exchange of energy during an elastic collision is 
indeed small. 

It is easy to derive from Eq. (1) the equations of motion for the coor- 
dinate X(t) and the momentum P(t) of the particle in the Heisenberg pic- 
ture. Note that this picture is defined through the total Hamiltonian H, so 
that X(t) and P(t) act in the full space, i.e., not only in the restricted space 
associated with the degrees of freedom of the bare particle. Once P(t) is 
eliminated, the dynamical equation for X(t) reads as follows: 

X(t)= - A ( t ) -  ftodt' K( t -  t') X(t ') (2) 

A(t) is an instantaneous force per unit mass which only depends on the 
particle and bath coordinates at time t = to, namely, 

A(t) = ~ \Ira, co 2 c~ - to)] X(to) 

+ ~2~ \ ~ /  [e -~~ '~ 
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and K(t) is a memory kernel equal to 

M~] 
K(t) --= ~ Q~ rn---~ co--~ cos cont (4) 

n 

Equation (2), which has been established without any approximation, con- 
tains the exact dynamics of the particle, and constitutes for this particular 
model the expression of the Mori's theorem. (6) Note that it does not per se 
introduce any irreversible effects. 

In order to induce a relaxation, the oscillators of the bath must be 
spread over a quasicontinuum of frequencies, and the distribution laws for 
the f2n's, the m,,'s and the con's must be some smooth functions; K(t) is then 
a peaked function near t = 0 +, on an interval defining the memory time of 
the system. As is welt known, this amounts to assume that the Poincar6 
times are so long that they can be rejected to infinity. In order to allow a 
detailed analysis, K(t) has to be modeled along these lines; a simple choice 
consists in setting from now on: 

K(t)= 7--e ~tO(t) (5) 
~R 

where O(t) is the step function. Turning back to Eq. (4), one sees that 7 is 
linked to the bandwidth of the effectively coupled oscillators; the ratio Y/vR 
can be viewed as a measure of the average coupling strength; as for rR, its 
meaning is best found by considering Eq. (2) and taking y ~ oe (the so- 
called infinitely short memory time limit): in this limit, ~R appears to be 
simply the relaxation time of the particle velocity. Note that 7 and rR have 
quite different physical meanings and cannot be amalgamated in a single 
parameter. 

The statement of the problem is now completed by specifying the 
initial state, Note that A(t) contains X(to) and bn(to), i.e., information 
about the initial preparation of the system (particle plus bath). The term 
depending on the initial position X(to) of the particle contains a factor 
K( t -  to); since K(t) is supposed to have a memory time of the order of y -  1, 
we shall study the behavior of the system for times t such that t - t o ~> 7-1. 
Then K( t -  to) is negligible and the initial position of the particle becomes 
irrelevant. We shall also assume that at time t = to the bath is in ther- 
modynamical equilibrium at temperature T, namely, 

1 
(b2(to) bn,(to))=6nn,(e~h~,_l) 1, / ~ = _ _  (6) 

kBT 

We shall be interested in correlation functions of the form 
( f( t)  g(t')). When t - t  o and t ' - t  o are greater than y ~, the correlation 
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functions only depend on the difference t -  t'. In order to simplify the 
mathematical notations and computations, the best way is to set to = -Go. 
This insures that all one-time averages are time independent and that all 
two-time correlation functions are time translationally invariant, so that 
they can be viewed as corresponding to stationary stochastic processes. 
Moreover we can now use the Fourier integral in the ordinary sense: 

f + ~ dt f ( t )  e *~t = f ( 0 9 )  ( 7 )  

We can now obtain the symmetrized autocorrelation function of the 
fluctuating force per unit mass q~ T(t) = �89 (A (t + t') A (t') + A (t') A (t + t') ) 
in the integral form: 

_ h7 2 ~+~d09 a9 flh09ei~O , 
qbr(t) - ~ 0 ~ 2rt 092 + 7~ coth ~ (8) 

Using the commutation relation for the fluctuating force per unit mass 

[A(m),A(09')] = - 4 =  
h? 2 o9 

Mz R 092 + ~2 6(co + 09') (9) 

one can easily show that the commutator IX(t), P(t)]  for the particle is 
equal to ih at all times, as it should3 7~ 

The autocorrelation function of the particle velocity 
C ~ ( t ) = � 8 9  can be found as follows. First, 
define the susceptibility ~(09) so that the Fourier transforms of X(t) and 
A(t), X(09) and A(09), are related via Eq. (2) through X(09) = Z(09) MA(co); 
then C~(t) is easily seen to be 

C~v(t) = h7 2 f + ~  d09 09 3 M2 flh09eiO~ , 
~ 2re co2 + 7 2 1~(09)12 c~ --~ -- (10) 

where Z(09) is given by 

Z(09)= M-~E092 + i09K(09)] 1_ 
1 1 

M ~2 + (7/~R)[i09/(~ --/CO)] 
(11) 

Clearly, the subsequent results will depend on the modeling (5); but, 
since most of the specific behaviors to be found essentially originate from 
the coth term (which brings in the quantum effects), we would expect that 
the basic features should be grossly independent of the modeling, especially 
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for low temperatures. Moreover, it is obvious that in particular, for all 
memory kernels K(t) which possess an infinitely short memory time limit, 
the results are effectively independent of the modeling in that limit. 

3. TIME BEHAVIOR OF THE CORRELATION FUNCTIONS 

We shall first examine the spectral density of the fluctuating force 
because, as we shall see, two different noise regimes exist according to the 
temperature of the bath. Then we shall proceed to the discussion of the 
behavior of the autocorrelation function of the fluctuating force per unit 
mass, q~r(t) [Eq. (8)] and of the autocorrelation function of the velocity, 
C~(t) [Eq. (10)]. 

3.1. The Spectral Density of the Fluctuating Force 

It can be seen from Eq. (8) that the spectral density of the fluctuating 
force per unit mass is given by 

( i A ( c o ) 1 2 )  _ h72 co coth  fihco 
M.t. R co 2 + 7-"""----- ~ ~ (12) 

At high temperatures, this expression can be written as 

(IA(co)12) ,~2 - - -  
kBT 7 2 

MrR o9 2 + 7 2 

For times much longer than the memory time 7 
in the relevant frequency range co 47, 

(13) 

i of the system, one gets, 

The noise is then a standard white noise. 
But, if the temperature is sufficiently low, the spectral density of the 

fluctuating force becomes nearly equal to 

([A(co)]2) ~ h7 2 co 
M~ R co2 + 72 (15) 

One can remark that, in these temperature conditions, the bandwidth 7 
plays the role of a frequency cutoff. Indeed, for 7--* 0% (]A(co)] 2) behaves 
like co and diverges when co--, o% which is clearly unphysical. One can 
equally note that this cutoff is built in from the beginning in the model, as 

( ]A(CO)] 2 ) -----2 kB----~T (14) 
MzR 
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soon as one assumes that K has a finite memory, and therefore has not 
been introduced in any ad hoc fashion to get rid of unwanted divergencies. 
In the frequency range (-047 the spectral density of the fluctuating force 
behaves like hco/M*R. Such a behavior is fundamentally very different from 
the white noise type which prevails at high temperature in this frequency 
range. 

Therefore, one can expect that a crossover between two noise regimes, 
roughly speaking classical and quantal, should occur for a temperature T{ 
such that 

2 kB ~( 72 h72 co with co ~ 7 
M~R (.02 -~- 72 M.cR co2 71_ 72 

that is, 
h 1 

2k~T[ y (16) 

3.2. The  Reservoir  Cor re la t ion  T ime  

Let us consider once again the spectral density of the fluctuating force 
per unit mass given by expression (12). On this expression, one easily sees 
that, for any given temperature T, the noise can be considered as white on 
the frequency range 

co~min (7, ~ --T ) (17) 

When the temperature is higher than the cross-over temperature T f 
defined above, the condition for white noise is simply co~7. This means 
that the force correlation function #v(t)  will essentially have decayed on a 
time scale of the order of 7-1. In this temperature range, 7 1 thus appears 
as a correlation time of the reservoir. (8) 

In the opposite case, when the temperature is lower than the cross- 
over temperature T{, the condition for white noise is completely different, 
since it becomes co~k~T/h. One therefore can expect that the force 
correlation function ~v(t)  will decay on a time scale of the order of h/ka T; 
let us more precisely set 

h 
r = ( 2 ~ )  1 _ _  (lg) 

kBT 

So, a new characteristic time, z, appears to be involved in the analysis; 
its signification is clearly apparent is the low-temperature case (i.e., when 
T< Tf): it then plays the role of a reservoir correlation time. 
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This analysis is completely qualitative; it will nevertheless be confir- 
med by the detailed calculation of the force correlation function, which will 
be carried out in the following paragraphs, in both cases of finite memory 
and of the infinitely short memory time limit. 

3.3. Finite Memory Case 

Let us first introduce the dimensionless function fr(t; 7) defined as 

= dx x - - ~  coth x e iT~x (19) 
O3 

The force and velocity correlation functions q~r and C~ can be expressed 
a s  

and 

where 

h72 
qs r ( t ) -  - -  fr(t; 7) (20) 

2~rMr R 

1 4 )-t/2 
Cvv(t) 2~Mrh i~ -~-~R [fr(t;Tc~ ) - f r ( t ;7c~+) ]  (21) 

Before going into details, let us note that all the above expressions 
remain valid when 7rR < 4, provided that the appropriate analytical con- 
tinuations are done; we shall nevertheless essentially discuss the case 
7TR >4,  which corresponds to a weak coupling between the particle and 
the bath, an assumption already contained in the Hamiltonian (1); at the 
end, a few words will be said for completeness on the opposite case. 

It is interesting to note that for 7zR>> 1, C~ can be rewritten in the 
approximate form 

h 
C~v(t) ~ - -  [fr(t; * ~ l ) -  fr(t; 7)3 (22) 

2~M, R 

So, C~ simply appears as the difference of two similar functions with two 
quite distinct time scales, namely, zR and 7 -1. 
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For further reference, we give the value of Cw for t = 0, directly 
obtained from Eq. (10); for T > 0 ,  we find 

h 
C~v(t = O) - - -  (1 - 4/TrR)- 1/2 

2~MT R 

1 1 ] (23) 
x 2~(?z~+)--2~(yT~ )q 7r~+ 7 r~- 

where ~ denotes the Euler psi function. For T ~  oe it is seen by using the 
expression for the ~ function close to the value zero of its argument that 
Cw(t = O) --* kB TIM (see Fig. 1), as required by the equipartition of energy. 
For T =  0, C v j t  = 0) reduces to 

Cvv, r = o ( t = 0 )  = h ( 1 - 4 / T r R )  1/21n 1 + (1-4 /Tz'R)  1/2 (24) 
rcMzR 1 -- (1 - 4/7TR) 1/2 

independently of the order of the limits T -~ O, t --+ O. 

3C 
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F i g .  1. Variation of the mean-squared velocity as  a function of temperature. At high t e m -  

p e r a t u r e ,  the classical equipartition theorem is recovered. 
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Since the force correlation function--directly related to the 
noise--clearly plays a central role, it deserves a scrutinized study, which 
will be the subject of the following paragraph. 

3.3.1. Discussion of  the  Force Correlat ion Funct ion.  As 
noted before, two different behaviors of q~T(t) are to be expected on 
physical grounds according to the magnitude of the product 7~. 

At high temperature, r is much smaller than the other relevant time 
1 so that the quantum effects are in some way averaged out except for 

small corrections. On the contrary, at low temperature, r becomes larger 
than 7-1 so that the full quantum nature of the spectral density of the fluc- 
tuating force (i.e., of the noise) does have enough time to become apparent. 

(a) High Temperature Case ( ~ < 1 ) .  In this case, the most con- 
venient expression f o r f r  is obtained by a contour integration; starting with 
Eq. (19), one straightforwardly obtains 

1 t fT(t; 7) = - -  e -~ - 2 ln(1 - e 2"h-lkBvt) + O(?z) (25) 
7Z 

This expression displays two interesting features. First, f v  essentially 
undergoes an exponential decay, directly reflecting the memory kernel K(t). 
Secondly, the quantum correction (which is indeed exponentially small) 
exhibits an essential singularity of the form e-Cste/~ which precludes any h- 
power series expansion. These quantum effects die out on a time scale 
which is quite minute at high temperature (see Fig. 2). 

.5 

Fig. 2. Variations of C,,v/C,,o (solid line) and of ~bT/~V (dashed line) as functions of t for 
7 v = 0.1 and Y~R = 10. The bar denotes the mean value defined as f =  ~+~ dTtf(t ). The noise is 
in its classical regime; the force as well as the velocity correlation functions decay quasi- 
exponentially. 
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From Eq. (20), 45 r is seen to have exactly the same properties and 
thus the characteristic correlation time of the fluctuating force appears to 
be simply the inverse of the bandwidth of the bath, a standard result. (8) 

(b) Low-Tomporoture Coso (7 l ~ r ) .  Now, the contour 
integration which led to expression (25) is of no use. A direct asymptotic 
evaluation of the integral (19) allows to write 

1 i 1 f r ( t ; 7 ) = f ~  (7~) 2 (t/jz)2 

+ O(7~) -4 

sinh21t/2~il 

(26) 

where fo, the T = 0  part, is expressed in terms of exponential integral 
functions/9) 

f0(t; 7) = --e-~"Ei(Tt ) + e~tEl(Tt) (27) 

The net time behavior of f r ( t ;  7) is rather subtle. As long as t < r ,  the 
two terms of the (Tr) -2 correction nearly cancel one another and fT 
deviates from f0 in terms of the order of (7r) 4. In other words, f0 is 
representative of all the low-temperature functions within the large interval 
t< r .  

When t <7 1 fo behaves as - 2 ( C  + In 7t), where C denotes the Euler 
constant. 

For 7 1~ t, the asymptotic expansion off0 can be used and is found 
to start with -2 / (7 t )  2. So, in the interval 7 1< t < ~, f0 displays a long time 
tail ~ -Cs t e / t  2. As contrasted to the high-temperature case, this power- 
law behavior does not depend on the precise form of the kernel K(t) [for 
instance, it can be shown that the same long time tail offo exists when K(t) 
is Gaussian]. 

When t approaches z, the first correction to fo becomes significant; its 
first contribution cancels the t -2 term originating from f0; it essentially 
remains the second contribution, which behaves as - 2 - 1 ( 7 r ) - 2  
sinh-2(t/2z) and ultimately gives the exponential decay e -'/~ with the very 
small negative amplitude -2/(7~) 2. 

So, in the quantum regime, the basic function fr(t; 7) displays a long 
time tail in the large interval 7 - 1 <  t <  v and only recovers an exponential 
decay (with a negative and minute amplitude) for times greater than 
h/kB T. 

Turning back to the full expression (20) for the force correlation 
function ~br(t ) and taking into account the preceding analysis, we can con- 
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sider three time intervals. Within each of them, an approximate expression 
for the force correlation function can be written, namely, 

I - 2 ( C + l n  7t), 0 < t < 7  -1 
h72 

rbr(t)~_27~MrRX -2/(7t) 2, 7-1<t<~ (28) 
_2(7r) 2 e-,/~, r < t  

Thus q~r(t) displays a long time tail up to t<z (see Fig. 3). 

(c) Intermediate-Temperature Range (? ~ r ) .  In the inter- 
mediate-temperature range, a convenient finite expression for fv is hard to 
find, if it exists. Nevertheless it is possible to obtain an exact closed 

o . o L  , , , 
I 

I ! , s f  " "  " ~  

I / 

I / 

-I.0 - I 

i // 
k . J  

l 1 I I J 
t 
I -  v 

Fig, 3. Variations of Cvv/Cw (solid line) and of ~ T / ~ r  (dashed line) as functions of t for 
? z =  10 and YrR = 10. The noise is in its quan tum regime; the force correlation function 
exhibits a long time tail up to t-~ z; the velocity correlation function displays an intermediate 
behavior (z,~ = 1:). 

822/40/1-2  t2  
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expression valid for all half-integer values of the parameter 7v; namely, for 
7 ~ = n o -  1/2(no = 1, 2,...), one has 

fr(t; 7) = 2 cosh 7t In coth ~ 1 
7z 

n0 2 c o s h [ 7 - ( n +  1/2)/r] t 
- ~ (29) 

,,=o n +  1/2 

This formula evidently shows that, in the intermediate-temperature 
range, f r  does not have a simple behavior and that a clear-cut time scale 
defined in function of the other times 7 1 and v does not exist (see Fig. 4). 

(d) Cross-Over Temperature. The above analysis confirms that the 
existence of two different noise regimes leads, as expected, to different 

0.5 

0.1 

0 

-0.1 

~11~'1 I T I 1 I I 
I 

I 

I ,,p~" 
I P 

P 

t 

Fig. 4. Variations of Cvv/C~v (solid line) and of q~T/qSr (dashed line) as functions of t for 
7z= 2 and 7rR= 10. The noise and the force correlation function are in an intermediate 
regime; the velocity correlation function has still a classical behavior. 
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behaviors of the force correlation function. The cross-over can be located at 
the appearance of a zero for the force correlation function O r at some 
instant (r. A close inspection reveals that such a tf  does exist for T <  T { 
given by 

h~ (30) T[= ~k ~ 

in accordance with the qualitative expression (16). 

3.3.2. Discussion of the velocity correlation function. 
(a) ClassicalNoise Regime ( T >  Tcf ). The two first quantum corrections 
in C~(t)  as given by Eq. (21) cancel each other and one is left with 

Coo( t )  = - -  
he- yt/2 ~2 T ~)t7 
2rtMz {(1  + 3-77 gz) cosh [ (1  -- __~Z.R,/4) 1/2 2J 

+(1 
(31) 

For t ~ r ,  C~, ( t )~ - (h /2zMzR)(1-T t2 /2rR)  so that it has a parabolic 
variation near t = 0. When 7rR>> 1, expression (31) simplifies, and, for t > r ,  
one can write 

Z~IVI T 

1 1 e -Tt -- (32) __.~_ 72.C2 O(7.c R ) 2 
YTR 

This expression shows that, at high temperature and when ?zR>>I, 
Cry(t) is essentially an exponential with the decay time TR, which is the 
largest time scale of the problem; it also contains a small correction decay- 
ing on the time y- l .  When the condition yzR>> 1 is not fulfilled, C~(t)  is a 
linear combination of exponentials with time constants 
27-111 _ ( 1 - 4 / 7 z R )  ~/2] 1 

Thus, a t  high temperature, two time scales simply emerge: 7 1, which 
is the correlation time of the fluctuating force (fast variable) and rR which 
roughly describes the relaxation of the velocity (slow variable). In the 
physically interesting range 7TR >> 1, the interpretation as a standard Brow- 
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nian motion is thus still meaningful. The first time scale is the inverse of the 
bandwith of the coupled oscillators; the second one is linked to the interac- 
tion strength between the Brownian particle and the bath. In fact, except 
for small (but singular) quantum corrections, we here recover the gross 
features of the classical Brownian motion. Figure 2 displays the exact 
variations of q~r and C~v in this case. 

(b) Ouontum Noise Regime (T< T D. In this noise regime, two dif- 
ferent behaviours of C~v can be distinguished, whether r ~ R  or r >>re. 

When r~rR,  Cw displays no long time tail and therefore its behavior 
may be considered as quasiclassical. In other words, the quantum effects, 
already visible on the force correlation function, have not enough time to 
appear on the velocity correlation function. However, in view of the long 
negative time tail of the force correlation function, a description in terms of 
Brownian motion begins to be unappropriate (see Fig. 4). 

For r>>rR, Cv~ also exhibits a long negative time tail. Using Eq. (21), 
one sees that several time intervals can be considered. The variations of C~ 
in these intervals are outlined in the following formula: 

- 2  ( C + l n  @e ) , ~ - I  ~ t ~ ' C R  

Cw(t)~-2rcMze x - 2  r e < t < r  (33) 

- 2  e t/T, z< t  

Note that C~( t=0)  is finite. However, C~v(t), albeit continuous, has no 
Taylor expansion close to t=0 ,  so that the precise behavior has been 
obtained by numerical calculation for t<7 -l. Comparing formulas (28) 
and (33), it is seen that q5 r and Cw both display a long time tail up to t<r .  

Figure 3 plots these two functions (in order to get a clear diagram for 
both q~T and Cv~, we chose r=zR;  C~o is then in an intermediate tem- 
perature range and does not exhibit a clear-cut time scale(~)). 

So, it is seen that the dynamical behavior of the force and velocity 
correlation functions now involves the three times 7 -~, rR, and z in a 
rather intricate way. One could have hoped that, by keeping the inequality 
7 ~ z R ,  two different time scales (one for the force, one for the velocity) 
would still have emerged, corresponding to fast and slow variables. This is 
not the case: the force and velocity correlation functions both display a 

3 However, the long time tail ~ - t  -2 of C~(t) will be clearly apparent in Fig. 6, curves c and 
d (see the following paragraph). 
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- t  2 tail within the same time interval ( t< r ) .  It is therefore impossible to 
delineate two well-separated time scales characterizing slow and fast 
variables. Thus, at low temperature, the dynamics of the particle cannot be 
interpreted in terms of Brownian motion, in contradistinction to classical 
mechanics. 

These two different behaviors of Cw(t) inside the quantum noise 
regime can in turn be distinguished by a cross-over temperature T~(7). 
Exactly as for the force correlation function, the cross-over can be located 
at the appearance of a zero for C~,~(t) at some instant t~,. Such a t,, does 
exist for T <  T~ given by 

, [ , ( , 4  t 4, 
T~'. is a decreasing function of ?; it is plotted in Fig. 5. For T <  ~ ,  t~ is 
found to be 

16 ksT c T ) 
tv_~ 7 l ln ~ h~ T < . ~  (35) 

and thus has a logarithmic divergence for T =  T~.- 0; it uniformly decreases 
toward 0.879 7 1 when T goes to zero. 

Before examining the limit " /~  30, let us briefly say what happens 
when 7rR < 4. Then all previous formulas have to be analytically continued 
and, because ~+_ has now an imaginary part, oscillations in time appear 

2s 

1.0 

Xg 

3.0 IO.O ~"[R 

Fig. 5. Cross-over temperature ~ for the velocity correlation function versus YzR. 
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here and there, so that T~ cannot be defined as simply as before. The 
occurrence of such oscillations when the coupling constant is increased and 
becomes of the order of magnitude of the bandwidth of the dissipative con- 
tinuum is a most general phenomenon in quantum physics. 

3.4. Infinitely Short Memory Time Limit 

It is interesting to study how the previous behaviors are modified 
when one disregards the memory effects in the equation of motion (2); by 
taking the limit ? ~ +oo [see Eq. (5)], X(t) is seen to obey the ordinary 
nonretarded differential equation 

X(t) = -A( t )  + 1 X(t) (36) 
"C R 

One can remark here that, since the cross-over temperature T[ 
delineating the two noise regimes becomes infinite in the limit 7 ~ +oo 
[see Eq. (30)], the quantum noise regime prevails whatever the tem- 
perature T of the bath. The force correlation function ~br(t) is obtained 
from Eq. (20) and given by 

~MrR ~P.P.-+8 ~ {n-~[~T-Tjf-}2 j (37) 
t n = l  

where P.P. denotes the principal part. At T= 0, this expression reduces to 
the Schmid's result. (1~ Note that J r  has a long negative time tail for any 
temperature T, although an infinitely short time scale (?-1 =0) has been 
introduced by construction. Moreover, as expected, expression (37) for 
qfr(t ) is independent of the choice of the modeling for the memory kernel 
x(t). 

The velocity correlation function C,~(t) can be obtained along the 
same line from Eq. (21). Since 7 --* +0% the form (22) can be used and one 
has 

h 
C~v(t)~- fT ( t ; r~ ' ) - - [7  2~r( t )] ,~ +o o (38) 

2~Mr R 

The last term disappears in the limit ? ~ +oo and Cvv reads 

h 
C~(t) ~- 2~MrR fr(t; Z~-I) (39) 

an expression which obviously could have been directly deduced from the 
equation of motion (36). 
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Thus C~ in the limk 7--* +oo exactly behaves like r T in the finite 
memory case, but with a time scale re  instead of ~ It will present two 
different behaviors according to the temperature, above or below the cross- 
over temperature T~ which can be found from Eq. (34) with 7 -* +oo, i.e., 

h 
T~ - - -  (40) 

~kezR  

Thus, suppressing the memory tends to decrease the cross-over tem- 
perature (see Fig. 5). 

C~( t )  is plotted in Fig. 6 for different values of the ratio r/rR; note 
how close to one another are the two low-temperature curves 
corresponding to z/rR = 1 and z/'c R = +oo. The long time tails ~ - t  -2 of 
Cw(t)  are visible on the low-temperature curves 6c and 6d. 

Cw is seen to diverge for t--* 0 +. Indeed, for T >  0 but finite, one has 

h 
Cw(t  = 0) - -  In ,/z (41) 

v ~ +~ rcM~R 

M RCv 2ci\ 

0.0 I.u 2.0 tm 
T R 

Fig. 6. Variat ions of C~v in the limit ,/--* +oo as a function of t for different values of the 
ratio Z/TR: curve (a), classical behavior  (r/zR = 0.1); curve (b), this curve corresponds to the 
cross-over temperature  T =  ~ ( z / z R -  0.5); curve (c), q u a n t u m  behavior  (T/ZR = 1); curve (d), 
this curve corresponds  to T =  0 ( r / z  8 = + o o ) .  
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whereas for T strictly equal to zero 

h 
C~v(t = 0) lnTrR (42) 

7 ~ +o~ r c M r  n 

This divergence leads to questioning the validity of the approximation 
7 --+ + ~ for this model. However, we now show that the divergence of C~v 
occurs on a small time interval. 

Indeed for high temperatures ( r < r e ) C ~  reads 

C v ~ ( t ) = 2 r c M r R  e t / ' r -  2 ln(1 - e-n~) + O (43) 

The divergence thus occurs for 

t < t l  = re  ra/2r (44) 

i.e., on an exponentially small interval. 
For low temperatures, C~ is obtained from Eq. (33) with 7-~-- ,0.  

Clearly the divergence occurs for t < t ] < r R .  Remind that at low tem- 
perature C~ displays a - t  - 2  tail on a time scale r>>r R. Here again the 
divergence is restricted to a narrow domain. 

One can conclude that the approximation ~ ~ + 0o certainly fails for 
t < t~ or t'~ depending on the temperature. For  t > t~ (respectively t > t'~) the 
limit ? ~ +oo corresponds to a physically sensible model as can be seen 
from Eqs. (31) and (33). 

When h--*0, t~--*0 and the approximation 7 ~ +oo can be retained 
for all temperatures (except T strictly equal to zero) as could be expected 
since the system becomes classical. 

4. D IFFUSION COEFFICIENT 

One can, as usual in purely classical Brownian motion theory, define 
for our quantum mechanical model a frequency-dependent diffusion coef- 
ficient D(~o) as 

D(~o)  = d t  C w ( t )  e i~ (45) 

Using the spectral representation (10) for Co~(t),  one obtains 

h7 2 
D ( ~ ) = - -  o~ coth flhoo 

2 M z  R (032 -- ~)/"I2 R) 2 -}- 72(.02 2 (46) 
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in the finite memory case, and 

D(co) = h co coth flhco (47) 
2MrR 0-) 2 -~ TR 2 2 

in the infinitely short memory time limit. Let us now discuss the con- 
sequences of the presence of quantum factors in the expression for D(co). 

4.1. S t a t i c  D i f f u s i o n  C o e f f i c i e n t  

The static diffusion coefficient is obtained by taking the limit co ---, 0 of 
expression (46). One gets, whatever the temperature (provided that it is 
finite) 

k8 TrR 
Do= lira D ( c o ) - - -  (48) 

, ~ o  m 

in accordance with the Einstein relation. The behavior of the particle at 
long times is thus of diffusive type, as is usual in purely classical Brownian 
motion theory. So we see that, even in our quantum mechanical descrip- 
tion, the diffusive motion prevails at long times. But nothing is said on the 
behavior of the particle at intermediate times, that is, before it begins to 
diffuse. In particular, the time after which the motion of the particle begins 
to be of the diffusive type is not precised when only Do is known, and 
depends on the temperature with respect to T~. Moreover, when T =  0, one 
gets D o = 0, which evidently implies that a finer analysis is necessary to 
describe the long time behavior of the particle. 

4.2. T r a n s i e n t  D i f f u s i o n  C o e f f i c i e n t  

In order to get a finer description, let us define a nonstationary dif- 
fusion coefficient ~(t).  Since for t--, +o% the average dispersion of the par- 
ticle position A x Z ( t ) = ( [ x ( t + t ' ) - x ( t ' ) ] 2 ) ,  is expected to behave as 
2Dot, a convenient definition of ~( t )  is 

l d  
~ ( t )  = ~ dt ( [x ( t  + t') - x(t ')]  2)~, (49) 

It is clear that 

~(t) = f~ dr C~.(C) (50) 

For t--* +o% @ ( t ) - - . D  o [see Eq. (48)], which means that the long 
time limit of ~( t )  is precisely the static diffusion coefficient. 
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From the foregoing analysis of C~v(t), one sees that in the classical 
noise regime (i.e., when T >  T~, N(t) increases monotoneously in an 
exponential manner toward its limit value Do; the diffusive regime is 
attained when C~jt) has essentially decreased to zero, that is, for t>>zR. 
When t ~ +o% Ax2(t) ~_ (2kBT/M) ~R[t - (1 - 4/TTR) TR]. 

In the quantal noise regime (i.e., when T <  T~, ~( t )  has still a 
classical behavior when T >  T; [exactly as C~jt)]. However, below T~, 
~( t )  presents a markedly different behavior, since it first increases and then 
slowly ( ~ l / t )  decreases toward Do. Thus, when quantum effects are 
dominant, the nonstationary diffusion coefficient can exceed its stationary 
value given by the Einstein relation. In this case, the diffusive regime is only 
attained very slowly after times t>>h/kBT. When t--, +o% one has in this 
c a s e :  AxZ(t)  ~- (2kBT/M) ~Rt + h2/6MkBT. 

4.3. The Zero-Temperature Case 

As we said previously, D o is then equal to zero, and, in that case, 
@(t)~ l / t  as long as t>>zR. This is easily seen to yield a In t behavior for 
the average dispersion of the position of the particle with respect to its 
initial position. This means in particular that the diffusive regime, which is 
attained after a time of the order of h/k~T at low but finite temperature, 
can never be reached at zero temperature. This fact has to be associated 
with the 1/co present at low frequencies in the spectral density of the 
position fluctuations of the particle at zero temperature, as opposed to the 

2.0 a 

1.0 

O.C) 
0 T R t 

Fig. 7. Nonstationary diffusion coefficient ~ ( t )  in the limit ~ ~ +oe as a function of t: curve 
(a), classical behavior (v/zR-0.25); curve (b), this curve corresponds to the cross-over tem- 
perature T =  Ty (UTR--0.5); curve (c), quantum behavior (z/zR= 1); curve (d), this curve 
corresponds to T = 0  (T/ZR ~ +oe). 
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1/o) 2 factor which governs the low-frequency spectral density of the 
position fluctuations at any finite temperature. Indeed, one can remark that 
the diffusional motion which prevails at any finite temperature is accom- 
panied with the emission and absorption of reservoir quanta; since at T= 0 
no excitations are present in the system, only emission processes are 
possible, which in turn profoundly modifies the time behavior of the disper- 
sion of the particle position. When t--. + ~ ,  one has in the zero-tem- 
perature case: Ax2(t) ~- (2h~R/~zM) In 7t + C s'e. 

The nonstationary diffusion coefficient ~(t)  is plotted as a function of 
t in Fig. 7. 

C O N C L U S I O N  

In this paper, we investigated a model, often considered in the past 
and, more recently, by Caldeira and Leggett, (2'4) in which a quantum free 
particle is coupled to a bath of quantum harmonic oscillators. The coupling 
between the particle and the bath being bilinear, it is possible to eliminate 
the bath degrees of freedom and to rewrite the particle equations of motion 
under a simple form containing a dissipative term and a fluctuating force 
term, for which exact microscopic expressions can be given, which is one of 
the main advantages of the model. When one uses for the dissipative term 
an exponential modeling K(t)~e -~t, where h 7 is the bandwidth of the bath, 
one can compute all the correlation functions of interest. For an infinitely 
short memory, we recovered the basic equations of Ford, Kac, and 
Mazur, (~) who studied the conditions under which the particle coupled to 
the bath exhibits Brownian motion. However, their study is limited to the 
classical case. In the quantum case, they wrote the formulas for the various 
correlation functions involved in the problem, namely, the correlation 
function of the fluctuating force and the correlation function of the particle 
velocity, but they did not study their behavior in detail. 

The question of the time behavior of the correlation functions in this 
model was recently raised by Lindenberg and West(H); they asserted that, 
at low temperature, the characteristic time of the correlation function of the 
fluctuating force is h/kB T. However, their study remains rather qualitative 
and does not consider the correlation function of the particle velocity. 

So, we intended to undertake a quantitative discussion of the time 
behavior of the various correlation functions involved in the problem, and, 
consequently, of the possibility of Brownian motion. We first remarked 
that it is possible to distinguish two noise regimes, roughly speaking 
classical (for T> T f) and quantal (for T< T~, where 2~zhkBTf=h~, and, 
consequently, that the time behavior of the force correlation function in 
these two noise regimes should be very different. 



188 Aslangul, Pottier, and Saint-James 

We then proceeded to a detailed quantitative analysis of the time 
behavior of the correlation functions. This analysis revealed that these 
behaviors are indeed very different in the two noise regimes quoted above. 

In the first case (classical noise regime), the correlation functions 
decrease exponentially. The correlation time of the fluctuating force 
appears as being of the order of 7 1. One can then, as usual, separate slow 
and fast variables, the latter ones evolving on a time scale 7 -1 charac- 
teristic of the bath and the former ones on a time of the order of the 
relaxation time rR of the particle velocity. This regime can therefore 
properly be described as a Brownian motion. 

However, if the temperature becomes lower than the cross-over tem- 
perature T {, one enters the quantum noise regime, in which quantum 
effects do manifest themselves in the following striking way: the correlation 
function of the fluctuating force exhibits a long time tail ~ - l i t  2, which 
appears to be essentially independent of the precise form of the memory 
kernel K(t). The quantum fluctuations have thus a very long range, of the 
order of h/ksT. This long time tail is equally present in the correlation 
function of the particle velocity when T becomes lower than T~ (with 

In the intermediate temperature range ( ~  < T < in[), the force and the 
velocity correlation functions have qualitatively different behaviors; the for- 
mer is already in its quantum regime, whereas the latter still keeps a 
quasiexponential decay on the time scale YR. 

The main consequence of this fact is that, below the cross-over tem- 
perature T{, it is impossible to consider the correlation time of the fluc- 
tuating force as the short time scale of the problem. One cannot then 
separate slow and fast variables: in particular, at low temperature (i.e., 
when T <  T;), all relevant variables are slow. It is therefore impossible to 
speak of Brownian motion in the temperature range T <  T {, and, afortiori 
r <  

Since it is possible to define a different cross-over temperature for each 
relevant physical quantity, it is seen that, globally, the system enters 
gradually the quantum regime. In that sense, one may speak of a smooth 
cross-over region between the classical and the quantum behavior of the 
system. 

We equally studied the particle diffusion coefficient, which is the trans- 
port coefficient of interest in this problem. We have shown that this coef- 
ficient always satisfies the Einstein relation, whatever the temperature. 
However, if one defines a transient diffusion coefficient ~(t) ,  its behavior as 
a function of time is seen to be very different depending on temperature. 
For instance, for T <  ~ ,  ~( t )  can exceed its limit value given by the 
Einstein relation and the diffusive regime is attained very slowly ( ~  1/t). In 
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particular, at zero temperature, the nonclassical behavior of ~( t )  manifests 
itself by a In t dependence of the average dispersion of the particle position, 
corresponding to a 1/co factor in the associated spectral density. 

Finally, let us point out as a matter of conclusion that one of the main 
advantages of the model lies in its simplicity, which allowed us to 
analytically calculate all the correlation functions. 

Clearly, from a physical point of view, it is interesting to determine the 
behavior at all times of the various correlation functions in a quantum 
system coupled to a bath. An obvious generalization would be to consider 
a particle in a given potential: the harmonic potential is also exactly 
soluble but only leads to a more complicated algebra without gain in 
physical insight. The double-well potential has been analyzed by Bray and 
Moore (12) using instanton techniques; they found a symmetry breaking for 
a finite value of the coupling constant. It would be interesting to tackle this 
problem by more conventional methods. 

NOTE ADDED IN PROOF 

We are indebted to Drs. Grabert et al. for drawing our attention on 
formula (3.23) of their paper (Z. Phys. B 55:87 (1984)) which also displays 
a - t - 2  tail in the position correlation function of an harmonic oscillator at 
T=0 .  
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